extension | φ:Q→Out N | d | ρ | Label | ID |
(C22×D7).1D4 = C23.5D28 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 112 | 8- | (C2^2xD7).1D4 | 448,276 |
(C22×D7).2D4 = D4⋊4D28 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 56 | 4+ | (C2^2xD7).2D4 | 448,356 |
(C22×D7).3D4 = M4(2)⋊D14 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).3D4 | 448,359 |
(C22×D7).4D4 = C22⋊C4⋊D14 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).4D4 | 448,587 |
(C22×D7).5D4 = D28⋊18D4 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 56 | 8+ | (C2^2xD7).5D4 | 448,732 |
(C22×D7).6D4 = D28.39D4 | φ: D4/C1 → D4 ⊆ Out C22×D7 | 112 | 8+ | (C2^2xD7).6D4 | 448,736 |
(C22×D7).7D4 = (C2×Dic7)⋊3D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).7D4 | 448,206 |
(C22×D7).8D4 = (C2×C4).21D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).8D4 | 448,208 |
(C22×D7).9D4 = (C22×D7).9D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).9D4 | 448,209 |
(C22×D7).10D4 = D7×C23⋊C4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 56 | 8+ | (C2^2xD7).10D4 | 448,277 |
(C22×D7).11D4 = C8⋊Dic7⋊C2 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).11D4 | 448,313 |
(C22×D7).12D4 = C7⋊C8⋊1D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).12D4 | 448,314 |
(C22×D7).13D4 = D4⋊3D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).13D4 | 448,315 |
(C22×D7).14D4 = C7⋊C8⋊D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).14D4 | 448,316 |
(C22×D7).15D4 = D4.D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).15D4 | 448,317 |
(C22×D7).16D4 = C56⋊1C4⋊C2 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).16D4 | 448,318 |
(C22×D7).17D4 = Q8.D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).17D4 | 448,344 |
(C22×D7).18D4 = D28⋊4D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).18D4 | 448,345 |
(C22×D7).19D4 = C7⋊(C8⋊D4) | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).19D4 | 448,346 |
(C22×D7).20D4 = D14⋊C8.C2 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).20D4 | 448,348 |
(C22×D7).21D4 = (C2×C8).D14 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).21D4 | 448,349 |
(C22×D7).22D4 = C7⋊C8.D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).22D4 | 448,350 |
(C22×D7).23D4 = C42⋊D14 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).23D4 | 448,355 |
(C22×D7).24D4 = C56⋊7D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).24D4 | 448,399 |
(C22×D7).25D4 = C4.Q8⋊D7 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).25D4 | 448,400 |
(C22×D7).26D4 = C28.(C4○D4) | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).26D4 | 448,401 |
(C22×D7).27D4 = C8.2D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).27D4 | 448,402 |
(C22×D7).28D4 = C2.D8⋊D7 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).28D4 | 448,419 |
(C22×D7).29D4 = C8⋊3D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).29D4 | 448,420 |
(C22×D7).30D4 = C2.D8⋊7D7 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).30D4 | 448,422 |
(C22×D7).31D4 = C24.14D14 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).31D4 | 448,493 |
(C22×D7).32D4 = C23.16D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).32D4 | 448,495 |
(C22×D7).33D4 = (C2×C4)⋊3D28 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).33D4 | 448,525 |
(C22×D7).34D4 = (C2×C28).290D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).34D4 | 448,527 |
(C22×D7).35D4 = Dic14⋊D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).35D4 | 448,692 |
(C22×D7).36D4 = C56⋊12D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).36D4 | 448,693 |
(C22×D7).37D4 = D28⋊7D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).37D4 | 448,706 |
(C22×D7).38D4 = Dic14.16D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).38D4 | 448,707 |
(C22×D7).39D4 = C56⋊8D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).39D4 | 448,708 |
(C22×D7).40D4 = D28.17D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).40D4 | 448,721 |
(C22×D7).41D4 = C56.36D4 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 224 | | (C2^2xD7).41D4 | 448,723 |
(C22×D7).42D4 = D8⋊10D14 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).42D4 | 448,1221 |
(C22×D7).43D4 = SD16⋊D14 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 112 | 8- | (C2^2xD7).43D4 | 448,1226 |
(C22×D7).44D4 = D56⋊C22 | φ: D4/C2 → C22 ⊆ Out C22×D7 | 112 | 8+ | (C2^2xD7).44D4 | 448,1230 |
(C22×D7).45D4 = D14⋊(C4⋊C4) | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).45D4 | 448,201 |
(C22×D7).46D4 = D4⋊2D7⋊C4 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).46D4 | 448,306 |
(C22×D7).47D4 = D14⋊D8 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).47D4 | 448,309 |
(C22×D7).48D4 = D14⋊SD16 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).48D4 | 448,312 |
(C22×D7).49D4 = Q8⋊2D7⋊C4 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).49D4 | 448,338 |
(C22×D7).50D4 = D14⋊2SD16 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).50D4 | 448,341 |
(C22×D7).51D4 = D14⋊Q16 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).51D4 | 448,347 |
(C22×D7).52D4 = (C8×D7)⋊C4 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).52D4 | 448,394 |
(C22×D7).53D4 = C8⋊8D28 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).53D4 | 448,398 |
(C22×D7).54D4 = C8.27(C4×D7) | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).54D4 | 448,414 |
(C22×D7).55D4 = C8⋊7D28 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).55D4 | 448,417 |
(C22×D7).56D4 = D14⋊2Q16 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).56D4 | 448,421 |
(C22×D7).57D4 = C4⋊(D14⋊C4) | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).57D4 | 448,521 |
(C22×D7).58D4 = C56⋊6D4 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).58D4 | 448,691 |
(C22×D7).59D4 = C56⋊14D4 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).59D4 | 448,705 |
(C22×D7).60D4 = D14⋊3Q16 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).60D4 | 448,722 |
(C22×D7).61D4 = C2×D8⋊3D7 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).61D4 | 448,1209 |
(C22×D7).62D4 = C2×SD16⋊3D7 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).62D4 | 448,1214 |
(C22×D7).63D4 = C2×Q8.D14 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).63D4 | 448,1218 |
(C22×D7).64D4 = D7×C4○D8 | φ: D4/C4 → C2 ⊆ Out C22×D7 | 112 | 4 | (C2^2xD7).64D4 | 448,1220 |
(C22×D7).65D4 = C22.58(D4×D7) | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).65D4 | 448,198 |
(C22×D7).66D4 = (C2×C4)⋊9D28 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).66D4 | 448,199 |
(C22×D7).67D4 = D14⋊C4⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).67D4 | 448,202 |
(C22×D7).68D4 = (D4×D7)⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).68D4 | 448,304 |
(C22×D7).69D4 = D4⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).69D4 | 448,305 |
(C22×D7).70D4 = D4⋊D28 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).70D4 | 448,307 |
(C22×D7).71D4 = D14.D8 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).71D4 | 448,308 |
(C22×D7).72D4 = D4.6D28 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).72D4 | 448,310 |
(C22×D7).73D4 = D14.SD16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).73D4 | 448,311 |
(C22×D7).74D4 = (Q8×D7)⋊C4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).74D4 | 448,336 |
(C22×D7).75D4 = Q8⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).75D4 | 448,337 |
(C22×D7).76D4 = D14.1SD16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).76D4 | 448,339 |
(C22×D7).77D4 = Q8⋊2D28 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).77D4 | 448,340 |
(C22×D7).78D4 = D14⋊4Q16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).78D4 | 448,342 |
(C22×D7).79D4 = D14.Q16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).79D4 | 448,343 |
(C22×D7).80D4 = D7×C4≀C2 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 56 | 4 | (C2^2xD7).80D4 | 448,354 |
(C22×D7).81D4 = C8⋊(C4×D7) | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).81D4 | 448,395 |
(C22×D7).82D4 = D14.2SD16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).82D4 | 448,396 |
(C22×D7).83D4 = D14.4SD16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).83D4 | 448,397 |
(C22×D7).84D4 = C56⋊(C2×C4) | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).84D4 | 448,415 |
(C22×D7).85D4 = D14.5D8 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).85D4 | 448,416 |
(C22×D7).86D4 = D14.2Q16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).86D4 | 448,418 |
(C22×D7).87D4 = C23.44D28 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).87D4 | 448,489 |
(C22×D7).88D4 = C24.12D14 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).88D4 | 448,490 |
(C22×D7).89D4 = D14⋊C4⋊6C4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).89D4 | 448,523 |
(C22×D7).90D4 = D28⋊D4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).90D4 | 448,690 |
(C22×D7).91D4 = D14⋊6SD16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).91D4 | 448,703 |
(C22×D7).92D4 = Dic14⋊7D4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).92D4 | 448,704 |
(C22×D7).93D4 = D14⋊5Q16 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).93D4 | 448,720 |
(C22×D7).94D4 = C2×D14.D4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).94D4 | 448,941 |
(C22×D7).95D4 = C2×D14.5D4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).95D4 | 448,958 |
(C22×D7).96D4 = D7×C22.D4 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).96D4 | 448,1105 |
(C22×D7).97D4 = C2×D8⋊D7 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).97D4 | 448,1208 |
(C22×D7).98D4 = C2×D56⋊C2 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | | (C2^2xD7).98D4 | 448,1212 |
(C22×D7).99D4 = C2×SD16⋊D7 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).99D4 | 448,1213 |
(C22×D7).100D4 = C2×Q16⋊D7 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 224 | | (C2^2xD7).100D4 | 448,1217 |
(C22×D7).101D4 = D7×C8⋊C22 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 56 | 8+ | (C2^2xD7).101D4 | 448,1225 |
(C22×D7).102D4 = D7×C8.C22 | φ: D4/C22 → C2 ⊆ Out C22×D7 | 112 | 8- | (C2^2xD7).102D4 | 448,1229 |
(C22×D7).103D4 = D7×C2.C42 | φ: trivial image | 224 | | (C2^2xD7).103D4 | 448,197 |
(C22×D7).104D4 = D7×D4⋊C4 | φ: trivial image | 112 | | (C2^2xD7).104D4 | 448,303 |
(C22×D7).105D4 = D7×Q8⋊C4 | φ: trivial image | 224 | | (C2^2xD7).105D4 | 448,335 |
(C22×D7).106D4 = D7×C4.Q8 | φ: trivial image | 224 | | (C2^2xD7).106D4 | 448,393 |
(C22×D7).107D4 = D7×C2.D8 | φ: trivial image | 224 | | (C2^2xD7).107D4 | 448,413 |
(C22×D7).108D4 = C2×D7×C22⋊C4 | φ: trivial image | 112 | | (C2^2xD7).108D4 | 448,937 |
(C22×D7).109D4 = C2×D7×C4⋊C4 | φ: trivial image | 224 | | (C2^2xD7).109D4 | 448,954 |
(C22×D7).110D4 = C2×D7×D8 | φ: trivial image | 112 | | (C2^2xD7).110D4 | 448,1207 |
(C22×D7).111D4 = C2×D7×SD16 | φ: trivial image | 112 | | (C2^2xD7).111D4 | 448,1211 |
(C22×D7).112D4 = C2×D7×Q16 | φ: trivial image | 224 | | (C2^2xD7).112D4 | 448,1216 |